Baryons beyond the quark-diquark model

Gernot Eichmann

(Darmstadt University of Technology, Germany)

with

Reinhard Alkofer Andreas Krassnigg Diana Nicmorus

(University of Graz, Austria)

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 1 / 15

Motivation

Hadron structure:

- Nucleon & delta properties: masses, em. form factors, N→Δγ transition, . . .
- Are baryons predominantly quark-diquark systems?
- Chiral structure, role of the **pion cloud**
- How are quarks and gluons distributed in hadrons?
 How does the proton spin come about?

A comprehensive description of hadrons within QCD is needed.

Chiral symmetry breaking, dynamical mass generation, confinement

Covariant bound-state equations

- Dyson-Schwinger equations (DSEs) of QCD provide input: Green functions
- Ab-initio, but **truncations** necessary "QCD modeling"
- Chiral limit ↔ heavy quarks
- Complements lattice QCD, quark models, effective field theories.

Mesons:

Bethe-Salpeter equation (BSE)

Maris, Roberts '97; Maris, Tandy '99;

Baryons:

Quark-diquark model

Oettel, Hellstern, Alkofer, Reinhardt '98, GE, Alkofer, Krassnigg, Schwinzerl '08,...

Faddeev equation

GE, Alkofer, Krassnigg, Nicmorus: PRL 104, 201601 (2010)

Bound-state equations

Mesons:

Bethe-Salpeter equation

Baryons: Three-body equation

• Bound-state amplitudes On-shell: P² = -M²

 $\Gamma(q, P) = \sum_{i} f_{i}(q^{2}, \hat{q} \cdot \hat{P}) \tau_{i}(q, P)$

Covariants \Leftrightarrow quark-spin and OAM eigenstates in particle's restframe:

- 0^- meson: 4 covariants: γ^5 , ... (s,p)
- 1⁻ meson: 8 covariants: γ^{μ} , ... (s,p,d)
- Nucleon: 64 covariants (s,p,d) (Quark-diquark model: 8)
- Dressed quark propagator solve quark DSE $\Rightarrow M(p^2), A(p^2)$.
- 2- and 3-quark kernels the 'modeling' part.

<ロト <回ト < 回ト <

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 3 / 15

Bound-state equations

Three-body equation:

Irreducible 3-body diagrams

3-gluon coupling to each quark, ...

- sources

Quark-quark correlations

assumed as dominant structure in baryons. Hints: lattice QCD, BSE, hadron spectrum, ...

18. 3. 2010 4 / 15

Bound-state equations

Faddeev equation:

Quark-quark correlations

assumed as dominant structure in baryons. Hints: lattice QCD, BSE, hadron spectrum, ...

Still numerically expensive, but we can do this now. Full covariant structure of the amplitude!

GE, Alkofer, Krassnigg, Nicmorus: PRL 104, 201601 (2010) EPJ Web Conf. 3, 3028 (2010) Need to know

- Quark propagator
 obtained from its Dyson-Schwinger equation
- 2-quark kernel Practical strategy: construct ansätze which satisfy AXWTI (⇔ chiral symmetry)

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 4 / 15

DSEs

Dyson-Schwinger equations:

Quantum equations of motion for QCD's Green functions.

Infinitely coupled system.

Roberts, Williams: Prog.Part.Nucl.Phys. 33 (1994)

Alkofer, von Smekal: Phys.Rept. 353 (2001)

Fischer: J. Phys. G 32 (2006)

Momentum limits: UV: Perturbation theory IR: Infrared exponents

Numerical solutions require truncations!

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 5 / 15

DSEs

Dyson-Schwinger equations:

Quantum equations of motion for QCD's Green functions.

Infinitely coupled system.

Roberts, Williams: Prog.Part.Nucl.Phys. 33 (1994)

Alkofer, von Smekal: Phys.Rept. 353 (2001)

Fischer: J. Phys. G 32 (2006)

Momentum limits: UV: Perturbation theory IR: Infrared exponents

Numerical solutions require truncations!

Quark propagator: _____-1_____1_+

Gluon propagator:

 $m_{Omm}^{-1} = m_{Imm}^{-1} D(k^2)^{-1}$

"Rainbow truncation"

Quark-gluon vertex:

Γ(k)

Sar

Quark DSE: "Rainbow"

Meson BSE: "Ladder"

Why rainbow-ladder?

- simple
- · exact in the UV
- respects chiral symmetry & its spontaneous breaking
 - $\Rightarrow \text{GMOR:} \quad f_{\pi}^{2}m_{\pi}^{2} = 2m_{q}\langle q\bar{q} \rangle$ chiral-limit pion is massless

Good description (up to the bottom quark) of pseudoscalar & vector-meson ground states

```
Effective coupling \alpha(k^2) is model input.
```

トイヨトイヨト

Quark DSE: "Rainbow"

Why rainbow-ladder?

- simple
- · exact in the UV
- respects chiral symmetry & its spontaneous breaking
 - $\Rightarrow \text{GMOR:} \quad f_{\pi}^{2}m_{\pi}^{2} = 2m_{q}\langle q\bar{q} \rangle$ chiral-limit pion is massless

Good description (up to the bottom quark) of pseudoscalar & vector-meson ground states

Effective coupling $\alpha(k^2)$ is model input.

Meson BSE: "Ladder"

What's beyond rainbow-ladder?

 Pion cloud: Attractive (~100 MeV) in chiral region; reduces hadron masses, decay constants; enhances charge radii

NJL: Oertel, Buballa, Wambach (2001) BSE: Pichowsky, Walawalkar, Capstick (1999) ; Fischer, Nickel, Wambach (2007); Fischer, Williams (2008)

 Non-resonant corrections: Repulsive (~100 MeV for m_ρ); Cancellation with pion cloud? Fischer,Williams, PRL 103 (2009)

MENU 2010

Gernot Eichmann (TU Darmstadt)

Effective coupling:

the only model input!

 $\alpha(k^2) = \mathbf{C} \,\alpha_{\rm IR}(k^2, \boldsymbol{\omega}) + \alpha_{\rm UV}(k^2)$

Maris, Tandy: PRC 60 (1999)

- 'Fixed strength' (-----): adjust c to reproduce experiment
- ⇒ good description of π , ρ ground states
- 'Core model' (): adjust c to reproduce hadronic quark core w/o pion cloud
- ⇒ consistent response in masses, decay constants, charge radii

Maris, Roberts, Tandy, Bhagwat, Krassnigg, ...

GE, Alkofer, Cloet, Krassnigg, Roberts : PRC 77 (2008)

results insensitive to ω : depend only on "integrated strength"

Gernot Eichmann (TU Darmstadt)

A quick detour: the quark-diquark model

Faddeev equations

neglect 3*q* correlations: pairwise *qq* interaction; involve *qq* T-matrix as intermediate step

 Rainbow-ladder kernel: timelike diquark poles in T-matrix

Quark-diquark BSE

 \Rightarrow nucleon mass & amplitudes

Diquark ansatz for qq T-matrix:

- Diquark BSE: solve for lightest diquarks: scalar (0⁺), axial-vector (1⁺).
- \Rightarrow diquark masses & amplitudes

Quark exchange between quark and diquark binds nucleon; gluon exchange between quarks binds diquarks.

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 8 / 15

A quick detour: the quark-diquark model

Effective coupling: the only model input!

 $\alpha(k^2) = \mathbf{C} \,\alpha_{\rm IR}(k^2, \boldsymbol{\omega}) + \alpha_{\rm UV}(k^2)$

- 'Fixed strength' (-----): adjust c to reproduce experiment
- ⇒ good description of π , ρ , **N**, **Δ** ground states
- 'Core model' (): adjust c to reproduce hadronic quark core w/o pion cloud
- ⇒ consistent response in masses, decay constants, charge radii

Quark-diquark model

N and Δ masses inherit behavior of meson properties. No baryonic input!

GE et al., PRC 79 & Nicmorus et al., PRD 80

Gernot Eichmann (TU Darmstadt)

in rainbow-ladder: any pair of 2 quarks bound by gluon ladder exchange

Nucleon amplitude:

$$\Psi(p, q, P) = \sum_{i=1}^{64} f_i(p^2, q^2, p \cdot q, p \cdot P, q \cdot P) \quad \tau_i(p, q, P)$$

64 Dirac covariants

Dominant covariants (\rightarrow quark model): $S_{11}^{+} = \Lambda_{+}(\gamma_{5}C) \otimes \Lambda_{+} \sim (U^{\uparrow}U^{\downarrow} - U^{\downarrow}U^{\uparrow}) U^{\uparrow}$ $A_{11}^{+} = \Lambda_{+}(\gamma^{\mu}C) \otimes \gamma^{\mu}\gamma_{5}\Lambda_{+} \sim (U^{\uparrow}U^{\downarrow} + U^{\downarrow}U^{\uparrow}) U^{\uparrow} - 2 U^{\uparrow}U^{\uparrow}U^{\downarrow}$

Gernot Eichmann (TU Darmstadt)

MENU 2010

18.3.2010 10/15

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Antisymmetry of the nucleon amplitude under quark exchange:

For a flavor-independent Faddeev kernel (such as rainbow-ladder): M_A , M_S do not mix \Rightarrow 2 degenerate solutions of the equation:

 $M_A \sim S_{11}^{+}, \ldots \qquad M_S \sim A_{11}^{+}, \ldots$

⇒ what about excitations?

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 12 / 15

Effective coupling: the only model input!

 $\alpha(k^2) = \mathbf{C} \,\alpha_{\rm IR}(k^2, \boldsymbol{\omega}) + \alpha_{\rm UV}(k^2)$

- 'Fixed strength' (-----): adjust c to reproduce experiment
- ⇒ good description of π , ρ , N, Δ ground states
- 'Core model' (): adjust c to reproduce hadronic quark core w/o pion cloud
- ⇒ consistent response in masses, decay constants, charge radii

Covariant Faddeev equation

M_N only ~50 MeV larger. Quark-diquark model works well for the nucleon!

Gernot Eichmann (TU Darmstadt)

MENU 2010

Effective coupling: the only model input!

 $\alpha(k^2) = \mathbf{C} \,\alpha_{\rm IR}(k^2, \boldsymbol{\omega}) + \alpha_{\rm UV}(k^2)$

- 'Fixed strength' (-----): adjust c to reproduce experiment
- ⇒ good description of π , ρ , N, Δ ground states
- 'Core model' (): adjust c to reproduce hadronic quark core w/o pion cloud
- ⇒ consistent response in masses, decay constants, charge radii

Quark-diquark model

M_N only ~50 MeV larger. Quark-diquark model works well for the nucleon!

Gernot Eichmann (TU Darmstadt)

Some recent developments

Deviation between Faddeev equation and quark-diquark model is small. What about the Δ ? We'll know soon. (Even more covariants: 128)

Delta form factors in the quark-diquark model: Nicmorus, GE, Alkofer, in preparation

Gernot Eichmann (TU Darmstadt)

MENU 2010

18. 3. 2010 14 / 15

Summary & Outlook

Groundwork for a systematic & covariant description of baryon properties in continuum QCD. Still a lot to be done:

Apply to:

- Excited baryons
- Nucleon, Delta, $N \rightarrow \Delta \gamma$ transition form factors \checkmark in particular at large O^2
- *NNyy* **vertex**:

- Two-photon corrections to proton's form factor ratio
- · DVCS, generalized parton distributions, nucleon structure
- · Proton-antiproton physics @ FAIR

Gernot Eichmann (TU Darmstadt)

MENU 2010

イロト イポト イヨト イヨト 18.3.2010

15/15

Thanks for your attention.

 \Rightarrow GE, R. Alkofer, A. Krassnigg, D. Nicmorus:

- PRL 104, 201601 (2010) (0912.2246)
- EPJ Web Conf. 3, 3028 (2010) (0912.2876)

996

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>